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Abstract—Using the superformula, a mathematic function
describing many complex shapes and curves, this paper de-
signs a new superformula kernel (SFK). We then introduce a
novel nonlocal means (NLM) algorithm for image denoising by
replacing the Gaussian kernel with the SFK. Simulations and
comparisons demonstrate that the proposed kernel and algorithm
show excellent denoising performance in terms of the peak signal
and ratio (PSNR) and structural similarity (SSIM).

Index Terms—Image denoising, Superformula kernel, Nonlocal
Means, peak signal and ratio, structural similarity

I. INTRODUCTION

Images are easily corrupted by noise during the image
acquisition, transmission or other image processing stage.
Noise removal for the corrupted images generally has a huge
effect to subsequent image processing operations. Thus, image
denoising plays a significant role in the preprocessing stage in
many image processing tasks such as edge detection, image
enhancement and segmentation, as well as pattern recogni-
tion [1].

Currently, the nonlocal means (NLM) algorithm as a patch-
based denoising method has been widely used for removing
the Gaussian noise from corrupted images. The basic idea is
to compare dissimilarity between patches within the whole
image and assign the higher weights to patches that are more
similar. The NLM has been demonstrated to be a robust tool
for image denoising. Many effects have done to improve
its performance in different ways. These includes improving
the dissimilarity measure criterion, weight estimation and
parameter optimization. Deledalle et al. improved the NLM
algorithm using the noise distribution model as a dissimilarity
measure criterion and considering the weight assignment as
a weighted maximum likelihood estimation (WMLE) prob-
lem [2]. In terms of weight estimation, Wu et al. [3] proposed
a local James Stein type center pixel weights (LJSCPW) to
improve the denoising performance of the nonlocal means.
Besides Hua et al. made full use of the original information
in method noise to improve the NLM in accuracy of the weight
assignment [4]. Salmon considered the weight assignment as
an optimization problem and improved the NLM using the
Steins Unbiased Risk Estimate [5]. These methods intend to
improve the weight assignment accuracy of the NLM using
various techniques.

Different from these existing NLM methods, this paper

works on the core of the NLM: the Gaussian kernel. Because
the Gaussian kernel is a simple curve with two parameters,
it may not be adaptive to complex noise circumstances and
various requirements in real applications. Correspondingly,
development of new kernels with robust structures becomes
necessary.

Due to excellent properties of the superformula which
contains several parameters and can produce many different
curves [6, 7]. This paper proposes a new kernel named
superformula kernel (SFK) which based on the superformula.
Compared with classical kernels (i.e. Gaussian), the SFK is a
complex but powerful kernel with more parameters and various
distributions. Furthermore, we introduce an improved NLM by
replacing the Gaussian kernel with the superformula kernel.
Simulation results are provided.

This paper is organized as follows: Section II briefly
reviews the classical NLM algorithm and superformula as
a background. Section III proposes the superformula kernel
and a new nonlocal means algorithm based on this kernel.
Simulations and comparisons are presented in Section IV and
Section V concludes this paper.

II. PRELIMINARY

A. Nonlocal means algorithm

The noisy image model, which describes an image corrupted
by an additive white Gaussian noise (AWGN), can be defined
as

yi,j = xi,j + ni,j , and ni,j ∼ ℵ(0, σ2) (1)

where xi,j is the clean image, yi,j is the noisy image, ni,j
is noise with normal random variables and variance σ2 with
zero mean. Therefore, the denoised image x̃ using the NLM
algorithm is defined by:

x̃i,j =

∑
wi,jyi,j∑
wi,j

(2)

where the weight wi,j is computed using the noisy patches yi,j
centered at pixel (i, j) and reference patches ỹ in the noisy
image. The weight wi,j can be defined as:

wi,j = exp(− 1

h2
‖yi,j − ỹ‖22) (3)

where h = 10σ is the smoothing parameter to control
behaviors of the weight function. Parameter σ is the noise
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level in a noisy image. ‖ · ‖22 is the Euclidean norm which
measures the dissimilarity between patches.

Fig. 1. Weight distribution using the Gaussian kernel under different noise
levels σ.

Fig. 1 shows the weight distribution of the Gaussian kernel
with different noise levels. Here we normalize the dissimilarity
between two patches within [0, 1]. Weight wi,j is shown in the
y axis with the maximum value of 1. We can see that the curves
of the Gaussian kernel converges to 0 with the converging rate
related to the noise level. These simple weight distributions of
the Gaussian kernel may not be suitable for complex situations
and requirements in practical applications. In the next section,
we will design a new kernel to overcome this drawback.

B. Superformula

The superformula proposed by Gielis can be represented
as [6]:

r(θ) =

(∣∣∣∣∣cos
(
mθ
4

)
a

∣∣∣∣∣
n2

+

∣∣∣∣∣sin
(
mθ
4

)
b

∣∣∣∣∣
n3
)− 1

n1

(4)

where parameters are the radius r, angle θ, rotational argument
m, exponents ni and the short and long axes a and b where
a, b 6= 0.

The superformula in Equation (4) is in the polar coordinate
plane. It can be transformed into the Cartesian coordinate
plane by [7]: {

x = r (θ) cosθ
y = r (θ) sinθ

(5)

where x and y are coordinate values in the x and y axes,
respectively.

The superformula describes two-dimensional (2D) shapes
and curves in the polar coordinate plane. Obviously, changing
its parameters (m,ni, a, b) will create a large number of
various shapes and curves. When a and b are different, the
superformula generates shapes closer to ellipses in which the
long and short axes are not symmetry; Otherwise, it creates
isotropic shapes. This indicates that the superformula was
derived from the function of an ellipse or a circle.

Due to the excellent property of the superformula in gener-
ating many complex shapes and curves, this paper investigates

its applications in image processing. Particularly, we will use
it to design a new image filtering kernel.

III. NONLOCAL MEANS ALGORITHM USING
SUPERFORMULA

This section first proposes a new superformula kernel and
introduces a novel nonlocal means algorithm using this kernel.

A. Superformula kernel

The NLM uses the Gaussian kernel to compute the weight
of each pixel. For a given noise level σ and slightly variations
in ‖yi,j − y‖ of two specific patches, the weight calculated
from the Gaussian kernel will be always fixed. In practical
applications, users may want to have the capability to change
the weight in such a situation to achieve the best denoising
performance. Hence we propose a new superformula kernel.
It will be used for our NLM algorithm.

As shown in Equation (5), both x and y are controlled by θ.
The mathematic relationship between x and y is a one-to-one
mapping via a specific θ. Thus we define a general formula
called the superformula kernel (SFK), which presented by

yk = SF (xk) (6)

where SF stands for the superformula, xk and yk denote the
input and output of the SFK, respectively.

Fig. 2. Comparison of the Gaussian kernel and superformula kernel in terms
of the weight distribution, under the same noise level, σ = 80.

Fig. 2 compares the weight distributions between the SFK
and the Gaussian kernel. As can be seen, for a specific noise
level, i.e. σ = 80, the weight distribution of the Gaussian
kernel is fixed as shown as the red curve in Fig. 2. However,
the SFK is able to provide various weight distribution schemes
based on different parameter settings. The blue, green, yellow
and pink curves in Fig. 2 are four examples of the SFK
weight distributions. This offers the proposed SFK the design
flexibility to meet various or special denoising requirements
in real-world applications.



B. Proposed Algorithm

By replacing the Gaussian kernel with the superformula
kernel in Equation (6), we propose a new nonlocal means
algorithm, called the nonlocal superformula (NLSF) algorithm.
The denoising model can still use Equation (2), but the weight
is defined by,

wi,j = SF (‖yi,j − ỹ‖22) (7)

Changing the parameter setting of the superformula in Equa-
tions (4) and (5), we can obtain a different weight assignment
scheme for the proposed NLSF.

IV. EXPERIMENTAL RESULTS

Our proposed NLSF has been successfully applied to var-
ious images. This section provides several simulation results
to show its denoising performance.

To quantitatively assess the denoising performance, we use
the structural similarity index (SSIM) [8] and peak signal-to-
noise ratio (PSNR) [9] to measure the denoised results. The
PSNR is defined as :

PSNR = 10 · log10
(
MAX2

I

MSE

)
(8)

where MAX is the maximum value of an image; MSE is the
average of the pixel-to-pixel differences between two images.
It is defined as:

MSE =
1

MN

M∑
i=1

N∑
j=1

(yi,j − xi,j)2 (9)

where x and y are the noise-free and noisy images with size
of M ∗N , respectively.

A. Denoising performance

We first test the denoising performance of the NLSF on
different images. The results are shown in Fig. 3. We add the
σ = 40 Gaussian noise to three grayscale images and then
apply the NLSF to images.

(a) (b) (c)
Fig. 3. Image denoising of the NLSF on different images. The top row shows
noisy images with additive Gaussian noise, σ = 40; the bottom row shows
the denoised results by the NLSF. (a) Lena; (b) house; (c) child.

TABLE I
THE PSNR MEASURES OF THE NOISY AND DENOISED IMAGES IN FIG. 3

image Lena House Child
Noisy Image 24.7547 24.4144 24.4027
NLSF 26.0189 28.4148 26.1947

As shown in Fig. 3, noise in these noisy images are removed
while preserving image details. In Fig. 3(a), the background
of Lena is smoothing and clear. In image Fig. 3(b), the
denoised image preserves edges and corners. In Fig. 3(c), the
denoised image have good visual quality. Table I gives the
PSNR measure results of images before and after denoising.
All images denoised by the NLSF have higher PSNR values
than their corresponding noisy images.

We then test the denoising performance of the NLSF when
noise levels change. The denoising results are shown in Fig. 4.
Table II provides their PSNR measure results. As can be seen,
all denoised images have good visual quality and have higher
PSNR values than their noisy images. These demonstrate the
NLSF’s excellent denoising performance.

(a) (b) (c) (d)
Fig. 4. Image denoising using the NLSF on different noise levels. The top
row shows noisy images with different noise levels; the bottom row shows
the dnoised results; (a) σ = 20; (b) σ = 30; (c) σ = 40; (d) σ = 50.

TABLE II
THE PSNR MEASURES OF IMAGE DENOISING USING THE NLSF WITH

VARIOUS NOISE LEVELS

level σ = 20 σ = 30 σ = 40 σ = 50
Noisy Image 29.9329 26.3792 24.1216 23.2164
NLSF 30.1806 28.1353 25.8516 24.2669

B. Performance comparison

We here compare the proposed NLSF with the classical
nonlocal means algorithm. In our experiments, we set the patch
size 7 ∗ 7 and the searching window 21 ∗ 21, which are the
same settings as the literature in [1]. Without loss of generality,
we list the PSNR and SSIM of denoising results on several
benchmark images from USC-SIPI1 in Table III, where values
in the bold fonts indicate the better denoising performance.
As can be seen, both PSNR and SSIM results show that our

1The USC-SIPI database is located in: http://sipi.usc.edu/database/



TABLE III
COMPARISON OF THE NLM AND NLSF WITH PSNR AND SSIM AT DIFFERENT NOISE LEVELS

Image Method PSNR
σ = 10 σ = 20 σ = 30 σ = 40 σ = 50 σ = 60 σ = 70 σ = 80

Cameraman NLM 29.5387 26.6358 24.2283 22.7205 21.7788 21.1162 20.6826 20.1528
NLSF 30.7726 28.6946 27.2286 25.2898 23.8149 22.1595 22.1595 21.5011

Lena NLM 31.0875 27.2372 24.9960 23.6510 23.6052 22.0210 21.5050 21.0752
NLSF 33.2546 29.9951 27.8542 26.0189 24.5048 23.0774 22.6603 22.1013

Pepper NLM 31.5914 27.2802 24.8528 23.2701 22.2075 21.5340 20.9586 20.5269
NLSF 33.3778 30.1806 28.1353 25.8516 24.2669 22.6941 22.3629 21.7872

House NLM 33.7724 29.4340 26.2951 24.5920 23.5308 22.8410 22.3220 21.9737
NLSF 33.3778 30.1806 28.4148 28.4148 25.8523 23.9280 23.4483 22.9801

SSIM
Cameraman NLM 83.41 77.91 73.39 69.51 66.70 63.99 62.00 59.51

NLSF 88.06 81.00 74.12 70.92 67.11 64.81 64.81 61.69
Lena NLM 87.36 79.34 73.82 69.72 66.04 63.41 61.27 59.07

NLSF 91.54 84.56 76.72 72.71 68.04 65.12 63.57 6090
Pepper NLM 88.82 81.78 76.57 72.23 69.08 66.16 63.89 61.35

NLSF 91.48 85.45 78.24 74.63 70.89 67.75 66.22 63.43
House NLM 86.18 81.17 77.01 73.90 71.10 68.87 66.55 64.81

NLSF 88.95 83.69 79.26 79.26 71.83 69.03 66.96 65.04

NLSF outperforms the classical nonlocal means algorithm in
all test images with most noise levels, particularly in the heavy
noise levels (σ is greater than 60).

V. CONCLUSION

To investigate the application of the superformula in image
processing, this paper has proposed a new superformula ker-
nel. This kernel has several parameters and offers users the
design flexibility to meet complex requirements in practical
applications. By replacing the Gaussian kernel with this kernel,
we have introduced a new nonlocal means algorithm. Image
denosing results and quantitative measures have demonstrated
the excellent denoising performance of the proposed kernel
and algorithm.
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